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Abstract
As generative techniques pervade the audio domain, there has
been increasing interest in tracing back through these com-
plicated models to understand how they draw on their train-
ing data to synthesize new examples, both to ensure that they
use properly licensed data and also to elucidate their black
box behavior. In this paper, we show that if imperceptible
echoes are hidden in the training data, a wide variety of audio
to audio architectures (differentiable digital signal processing
(DDSP), Realtime Audio Variational autoEncoder (RAVE),
and “Dance Diffusion”) will reproduce these echoes in their
outputs. Hiding a single echo is particularly robust across
all architectures, but we also show promising results hiding
longer time spread echo patterns for an increased information
capacity. We conclude by showing that echoes make their way
into fine tuned models, that they survive mixing/demixing,
and that they survive pitch shift augmentation during train-
ing. Hence, this simple, classical idea in watermarking shows
significant promise for tagging generative audio models.

1 Introduction
We seek to understand how generative audio neural network
models use their training data, both to detect training on un-
licensed data and to understand the inner workings of mod-
els. One post-hoc approach is to correlate synthesized out-
puts from the models with specific sounds that could be in the
training data [4, 3]. Other approaches modify the generator
directly to watermark its outputs, such as [7] who were in-
spired by [30] in the image domain. In our work, on the other
hand, we assume the least knowledge/control over the models
that are used and instead restrict our focus to techniques that
sit the earliest in the pipeline: those that modify the training
data only. One such line of work seeks to watermark training
data in such a way that when models are fine tuned, they will
fail to reproduce the training data. These so-called “poison-
ing” techniques are popular in the image processing domain
(e.g. “Glaze” [26] and “Nightshade” [27]), and similar works
have begun to appear in singing voice cloning [8] and music
generation [2, 1]. In our work, though, we do not seek to in-
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fluence the behavior of the model so drastically, but rather to
“tag” the data in such a way that the model reproduces the
tag, similarly to how [10] watermark their training data for
a diffusion image model. We are also inspired by the recent
lawsuit by Getty Images against Stable Diffusion when it was
discovered that the latter would often reproduce the former’s
watermarks in its output [29]. We would like to do something
similar with audio, but to keep it imperceptible.

All of the above approaches use neural networks to create
watermarks for generative models, but we are unaware of any
works that use any simpler classical, hand-crafted audio wa-
termarks for this purpose. If such watermarks could survive
training, this could make it simpler for practitioners to im-
plement, and it may also more easily shed light on the inner
workings of the generative models. While many options are
available, such as spread spectrum [21], phase-based [34, 23],
and OFDM [11], we surprisingly find success with some of
the oldest and simplest techniques based on echo hiding [17]
and followup work on time-spread echo hiding [22]. If we
embed a single echo or a fixed pseudorandom time-spread
echo pattern across each clip in the training data, the pattern
will be recreated by a variety of architectures when synthesiz-
ing new sounds. To show this in a general, reproducible way,
we test it using three open architectures with fundamentally
different approaches whose code is readily available online:
RAVE [5]1 Dance Diffusion [13] 2, and differentiable dig-
ital signal processing (DDSP) [12]3. Each model is trained
on audio only, as opposed to those also involving language
models (e.g. [14]) or MIDI (e.g. [18]), and each model is
trained on a collection of instrument sounds from the same
instrument. Specifically, we train models with different con-
ditions on each of three open datasets to further enhance re-
producibility: Groove [16], VocalSet [31], and GuitarSet [32],
which span vocals, and drums, and acoustic guitar, respec-
tively. We evaluate each model using the respective vocals,
drums, and “other” stems in the MUSDB18-HQ dataset [24]
as inputs to models trained under various conditions.

2 Methods
Below we describe the generative audio to audio models we
use, as well as the scheme we use to watermark the training

1https://github.com/acids-ircam/RAVE
2https://github.com/harmonai-org/sample-generator
3We use our own vanilla implementation of DDSP at https://github.com/

ctralie/ddsp
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data. Every audio sample in the training sets is converted to
a 44100hz mono, as are all of the inputs to the models. Sup-
plementary audio examples and source code can be found at
https://www.ctralie.com/echoes.

2.1 Audio To Audio Models
We restrict the focus of our work to audio to audio mod-
els, in which a neural network is trained on a corpus and it
synthesizes outputs in the style of the corpus. For instance,
one could train such a model on a corpus of violins and feed
it singing voice audio to create a “singing violin.” The first
such technique we use, Differentiable Digital Signal Process-
ing (DDSP) [12] has the simplest architecture out of all of the
models. We use the version from the original paper in which
the encoder is fixed as a 2 dimensional representation of pitch
and loudness, respectively. These dimension are then fed to
a decoder network which learns an additive and subtractive
synthesizer to best match the training data for a particular
pitch/loudness trajectory. The only thing we change is that
we use the more recent PESTO [25] instead of CREPE [20]
for efficiency, and we use a 3D latent space of loudness, pitch,
and pitch confidence. In the end, our DDSP models have ≈5
million parameters.

The second most complex model we use is “RAVE” [5],
which is a two-stage model that first learns a general audio
autoencoder and then improves this autoencoder with gener-
ative adversarial training. We use Rave V2, which has ≈32
million parameters, and we use snake activations and train
with compression augmentation.

The most complex model we use is “Dance Diffusion,”
which uses a vanilla diffusion network [28] with attention
to progressively denoise outputs from a completely random
input. To condition a style transfer to sound more like a par-
ticular input x, one can jump-start the diffusion process with
a scaled x and some added AWGN noise with standard devi-
ation η ∈ [0, 1]. The closer η is to 1, the more the output will
take on the character of the corpus on which Dance Diffusion
was trained. We use η = 0.2 in all of our experiments, and
we use a 81920 sample size, which means the receptive field
spans ≈1.86 seconds, and the denoising network has ≈222
million parameters.

2.2 Echo Hiding
Given a discrete audio “carrier waveform” x, audio water-
marking techniques hide a binary payload in a watermarked
waveform x̂ so that x and x̂ are perceptually indistinguish-
able. The original echo hiding paper by [17] accomplishes
this by creating two waveforms x0 and x1, each with a single
echo;

x0[n] = x[n] + αx[n− δ0]

x1[n] = x[n] + αx[n− δ1]
(1)

where α < 1 trades off perceptibility and robustness of the
watermark, and δ0, δ1 ≤ 100 samples at a 44.1khz sample
rate. These waveforms are then mixed together in windows

Figure 1: An example of cepstra computed on style transfer
of a 30 second excerpt of a Prince jazz session at Loring Park.
RAVE models trained on data with different echoes at 50, 75,
and 100 lead to visible peaks at the respective places in their
ceptra on the synthesized clips.

to create x̂ according to the payload; where x0 is fully mixed
at the center of a window if the payload contains a 0 at that
moment and x1 is fully mixed in if the payload contains a
0. For a window of 1024 samples, for instance, this amounts
to ≈43 bits per second at 44.1khz. Because the echoes are at
such a small shift, temporal aliasing of human hearing makes
them less noticeable. Furthermore, since convolution in the
time domain is multiplication in the frequency domain, the
logarithm of the magnitude of the DFT of a window addi-
tively separates the frequency response of the echo from the
frequency response of x. Therefore, the so-called “cepstrum”
of a windowed signal xw:

c = ifft(log(|fft(xw)|)) (2)

yields a signal in which a single echo is a high peak, which
is referred to as the “cepstrum” c 4. Thus, to decode the pay-
load from the watermarked signal, one computes c on each
window and infers a 0 if c[δ0] > c[δ1] or a 1 otherwise.

Since we seek to hide echoes in the training data for gen-
erative models, it is unlikely that the models we train will
synthesize the windows in the same order they occur in the
training set. Therefore, we do away with the windowing com-
pletely and instead hide the same echo δ in the entire audio
clip of each waveform in the training data. We then examine
the cepstrum c of an entire clip that comes out of our models.
To score the cepstrum value at δ in a loudness-independent
way, we compute the z-score at each lag i as follows. First, let
µa,b
c [i] be the mean of c on the interval [a, b], excluding i:

µa,b
c [i] =

 b∑
j=a
j ̸=i

c[j]

 /(b− a) (3)

4[17] note that it is more mathematically correct take the complex loga-
rithm of the DFT before taking the inverse DFT, and they further enhance
with an autocorrelation. But we found better results with the traditional cep-
strum.
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Figure 2: Comparing a 30 second style transfer using a RAVE
model with a time spread echo pattern p embedded in the
training data to one without any pattern. The cross-correlation
of the cepstrum with p peaks for the model with the embed-
ded pattern.

and let σa,b
c [i] be the analogous standard deviation:

σa,b
c [i] =

√√√√√√√
 b∑

j=a
j ̸=i

(c[j]− µa,b
c [i])2

 /(b− a) (4)

then we define the z-score as:

za,bc [i] = µa,b
c [i]/σa,b

c [i] (5)

A model trained on data watermarked with echo δ works
well if za,bδ [δ] > za,bi [i], i ̸= δ. In our experiments, we use
α = 0.4, δ ∈ {50, 76, 76, 100}, a = 25, and b = 125. Hence-
forth, we will assume those parameters and simply refer to
these numbers as “the z-scores z.” Figure 1 shows example
cepstra from clips created with different RAVE[5] models
trained on the GuitarSet [32] dataset, with various echoes δ.
The peaks and z-scores show that the models reproduce the
echoes they were trained on. We will evaluate this more ex-
tensively in the experiment section (Figure 4).

2.3 Time Spread Echo Patterns
Though we have found single echoes to be robust, the infor-
mation capacity is low. Supposing we use echoes between 50
and 100 at integer values, we can store at most ≈5.7 bits
of information in a single dataset. To increase the informa-
tion capacity, we also explore followup work on “time-spread
echo hiding” [22] that hides an entire pseudorandom binary
sequence p with L bits by scaling, time shifting, and convolv-
ing it with the carrier signal x:

x̂ = x ∗ αpδ, where pδ[n] = 2p[n− δ]− 1 (6)

where, to maintain perceptual transparency, α is gener-
ally significantly smaller than it is for a single echo; we use
α = 0.01. To uncover the hidden pattern, one computes the
cepstrum c according to Equation 2, and then does a cross-

Figure 3: As this example with various tagged VocalSet train-
ing data shows, the z-scores for a 75 echo are much higher for
the models that are trained on a dataset with a 75 echo embed-
ded in every clip, and the separation increases with increasing
clip duration.

correlation of c with (2p−1) to obtain a signal c∗. If the echo
pattern is well preserved, then c∗[δ] > c∗[i ̸= δ].

As in the original echo hiding paper, this work hides p at
different offsets δ in two different signals for hiding a 1 or
a 0, but, once again, we hide the same time spread echo at
the same lag δ = 75 for the entire clip in the training data
of our models. We then compute the z-score za,bc∗ on c∗ on
the model outputs using an equation analogous to Equation 5,
though we set a = 3, b = L + δ, and we also exclude the
samples of c∗ 3 to the left and 3 to the right when computing
µa,b
c∗ and σa,b

c∗ . Overall, we create 8 different versions of each
training set we have, each embedded with a different time
spread echo pattern of length L = 1024. Furthermore, we
ensure that the 28 pairwise Hamming distances between the 8
time spread patterns are approximately uniformly distributed
between 0 and 1024. Figure 2 shows an example of a style
transfer on a model trained on data with the first time spread
pattern embedded in all of the training data.

Note that followup work by [33] suggests ensuring that
the time spread echo patterns don’t have more than two
0’s or two 1’s in a row, which skews the perturbations in
x̂ to less perceptible higher frequencies. In this case, one
can also compute an enhanced cross-correlation signal as
c∗[n]− 0.5c∗[n− 1]− 0.5c∗[n+1]. Though we ensured that
our time spread echo patterns satisfied this property, we did
not find an improvement in our experiments, so we stick to
the original cross-correlation z-score.

3 Experiments
To rigorously evaluate the efficacy of our echo watermarks,
we train each of our three different model architectures
on 3 different datasets: the training set for Groove [16]
(≈8 hours), the entire VocalSet dataset [31] (≈6 hours),
and the entire GuitarSet dataset [32] (≈3 hours). For each
model+architecture combination, we train a variety of mod-
els with different embedded echo patterns in the training set.
Once each model is trained, we send through as input multiple
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Figure 4: The means and standard deviations of z-scores for datasets embedded with various single echoes (along each inner
row) evaluated for different echoes (along each inner column) show that all architectures (outer rows) only strongly reproduce
the echoes that they were trained on across all datasets (outer columns).

Figure 5: DDSP models show the strongest preservation of
echoes over all model types, as measured by the z-score.

random segments of lengths 5, 10, 30, and 60 seconds, drawn
from each of the 100 corresponding stems in the MUSDB18-
HQ dataset [24]. In particular, models trained on VocalSet
get the “vocals” stems, models trained on Groove get the
“drums” stems, and models trained on Guitarset get “other”
stems (which are mostly acoustic and electric guitar). Finally,
we report z-scores for various single echo and time spread
echo patterns on the outputs of the models.

We train RAVE for 1.3 million steps for Groove and 2 mil-
lion steps for GuitarSet and VocalSet. We train Dance Diffu-
sion for 50,000 steps on all models, and we train DDSP for
500,000 samples on all models.

Figure 6: Dance Diffusion models show slightly weaker z-
scores that may be mixed up between adjacent echoes, but
they still reproduce the correct echoes overall.

3.1 Single Echo Experiments

For these experiments, we train each architecture on each of
the original VocalSet, GuitarSet, and Groove datasets, as well
as on each of these datasets with an embedded echo of 50, 75,
76, and 100. Figures 3, 5, and 6 show distributions of z-scores
for models trained with an echo of 75 and tested with the
corresponding stems. Figure 4 shows the mean and standard
deviation of z-scores for the MUSDB18-HQ clips over all ar-
chitectures over all instruments over all echoes. The echoes
are quite robust over all architectures. The only weakness is a
mixup of the adjacent echoes 75 and 76 for the Dance Diffu-
sion models.
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Figure 7: An example of our evaluation for a Rave model em-
bedded with a time-spread echo pattern. The further away the
perturbed correlated pattern p′ gets from the truly embedded
pattern p, the smaller the z-scores get, increasing the AUROC
of z-scores from p and p′. Increasing the length of the synthe-
sized clip (depicted as color) also leads to stronger detection
capability. Finally, the z-scores of p in the embedded model
are easily distinguishable from the z-scores of p in the clean
model (x’s in left plot, dotted lines in right plot).

3.2 Time Spread Echo Sequences

Next, we train RAVE and DDSP on 8 time spread echo pat-
terns embedded in each dataset. We omit fully training dance
diffusion with these patterns due to computational constraints
and poorer results. Once again, we compute z-scores on the
outputs of multiple random clips from the 100 examples in the
MUSDB18-HQ training set. To quantify the extent to which
each model captures the time spread pattern, we compute z-
scores on the c∗ correlating with the original pattern p on the
output cepstra, and we also compute z-scores after correlating
with a perturbed version p′ of p with an increasing number of
bits randomly flipped. To quantify how the z-scores change,
we compute an ROC curve, where the true positives are z-
scores correlating to p, and the false positives are correlating
to the perturbed versions p′.

Figure 7 shows an example of this evaluation on a Rave
model trained on the first time spread echo pattern embedded
in the Groove dataset. The right plot shows the correspond-
ing ROC curves for 512 bits flipped at different durations, as
well as ROC curves where the false positives are z-scores in
a clean model correlating p. Figure 8 shows the AUROC for
all 8 pseudorandom patterns when comparing to 512 random
bits flipped and when comparing to the clean model. Inter-
model comparisons of z-scores are more challenging for the
Rave models compared to single echoes due to the variation
in embedding strength from model to model. However, within
each model we always get a positive slope in AUROC vs bits
flipped, and we can always tell the difference with the clean
model. This indicates that the correct echo patterns survive
training.

Figure 8: Z-scores of longer clips from models trained on
time-spread echo patterns stand out more.

Figure 9: Fine tuning clean dance diffusion models on single
echoes embeds echoes somewhat

4 Additional Use Cases

4.1 Dance Diffusion Fine Tuning

We use the train/test/validation set from Groove, and we cre-
ate our own train/test/validation set for VocalSet (we omit
GuitarSet in this experiment because it’s too small). We then
embed echoes in the test set and fine tune the corresponding
Dance Diffusion trained on the clean training sets, using the
validation set to make sure we’re not overfitting. This rep-
resents a more realistic scenario than training such a large
model from scratch with the same echo in the entire dataset.
Figure 9 shows the results, which show some initial promise.

4.2 Single Echo Demixing

In realistic applications of audio to audio style transfer, it
is common to treat the result as a stem and mix it in with
other tracks. Hence, we perform a cursory experiment to see
the extent to which the synthesized echoes survive mixing
and demixing. We use the “hybrid Demucs” algorithm [9] to
demix the audio. This demixing model was trained on (among
other data) the MUSDB18-HQ training set, so we switch the
inputs to the 50 clips from the MUSDB18-HQ test set.

To create our testing data, for each architecture, we input
the drums stem to the model trained on Groove with a 50
sample echo, the “other” stem to the model trained on the
GuitarSet data with a 75 sample echo, and the vocals stem to
the model trained on VocalSet with a 100 echo. We then mix
the results together with equal weights and demix them with
Demucs into the drums, vocals, and “other” track. Finally,
we compute z-scores on each demixed track at echoes of 50,
75, 76, and 100. Figure 10 shows the results. The trends are
similar to the overall single echo z-scores in in Figure 4, albeit
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Figure 10: If we first mix together outputs of models trained on Groove with an echo of 50, GuitarSet with an echo of 75, and
VocalSet with an echo of 100, the correct echoes pop out in the demixed tracks.

AUROCs
vs
Clean

Figure 11: Z-scores generally decrease for an increasing prob-
ability of pitch augmentation, though they remain detectable
even for high rates of augmentation.

with slightly weaker z-scores. Still, all of the correct echoes
pop out in their corresponding tracks.

4.3 RAVE Pitch Shift Augmentation

Data augmentation is often important to train generalizable
models. One form of data augmentation commonly used in
audio is pitch shifting. Unfortunately, classical watermarks
are known to be quite vulnerable to pitch shifting attacks [19].
Echo hiding is no exception; a shift in pitch up by a factor of f
will shift the echo down by a factor of f ; therefore, we would
expect degraded results in the presence of pitch shifting aug-
mentation. To quantify this, we design an experiment training
RAVE on the Guitarset data embedded with a single echo at
75 samples, for varying degrees of pitch augmentation, and
we test on the MUSDB18-HQ dataset as before. Pitch shifting
is disabled by default in RAVE, but when it is enabled, it ran-
domly pitch shifts a clip 50% of the time with simple spline
interpolation at the sample level. We modify the RAVE code
to use higher quality pitch shifting with the Rubberband Li-
brary [6], and we enable a variable probability for pitch shift-
ing. When pitch shifting happens for a clip in a batch, we pick
a factor uniformly at random in the interval [0.75, 1.25]. Fig-
ure 11 shows z-scores for training RAVE with an increasing
probability of pitch shift augmentation, along with AUROC

Figure 12: Tagging VocalSet, training with RAVE

scores using the clean model to generate the false positive
distribution. As expected, the results degrade with increasing
amounts of pitch shifting, though for the default value of 50%
pitch shifting, the z-scores are still quite far from the clean
distribution. Surprisingly, even at 90% pitch shifting, the z-
scores are still significant.

4.4 Tagging Datasets

We perform a preliminary experiment tagging a dataset with
two different echoes depending on timbre: we tag all but one
of the males in VocalSet with a 50 echo and all but one of the
females in the dataset with a 75 echo. As Figure 12 shows,
when we test with the remaining male and female, the z-
scores of the corresponding echoes are higher.

5 Discussion
Overall, we have shown that an incredibly simple technique
can be used to watermark training data; our implementations
of single echo hiding and time spread echo hiding are each
two lines of code in numpy/scipy. One caveat is that, across
all experiments, echoes are embedded more strongly in DDSP
than in Rave, and in Rave than in Dance Diffusion, suggesting
that complexity of the networks hampers the ability for the
echoes to survive as strongly. Still, each model reproduces
the echoes to some degree, suggesting the generality of the
approach. This is surprising given how complex the models
are and how they are unlikely to produce long sequences from
the training data.

In future work, we would like to fine tune larger foundation
models such as stable audio [15] and to explore the extent to
which different time spread echoes can simultaneously exist
in different parts of such models.
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